
Drupal as the
Head in
Headless
Commerce

Kyle Einecker

2

Drupal Lead at

ctrlAdel

3

4

Drupal as
the Head

5

This guy says...

6

and this guy says...

7

8

Integrations

Payment gateways

Shipping providers

ERP

PIM

Taxes

Marketing automation

9

Practical Reasons
Backend Functionality

Customer Service

Returns

Invoicing

User management

Account management

Promotions

Assumption

10

The commerce
platform is not Drupal
Commerce

11

The commerce API
supports headless use

Assumption

12

CMS capabilities of the
commerce platform
are insufficient

Assumption

Drupal is a full featured CMS

Built in commerce framework with a flexible
data model,Drupal Commerce

13

Why Drupal?

14

Drupal is the CMS

Assumption

15

Architecture
Considerations

16

Authentication

Integration user
vs

Customer authentication

17

Disconnected

User authentication

Checkout

Carting

Pricing

Product detail
pages

Search

Product listing
pages

Implementation
Tip #1

Write a health
checker and
notification.

Behavior

18

Commerce API

Is it fully featured?
What are the api usage limits?
Does it support querying?
Will the business logic fit within existing endpoints?
Does it support custom endpoints?
Is there a php sdk or library available?
Webhooks?

Usage & Flexibility

19

Data
What system owns what data?

- Users
- Orders
- Carts
- Products
- Product Attributes
- Inventory
- Accounts
- Content
- Catalog Structure Implementation

Tip #3

Make friends
with all the

teams.

Implementation
Tip #2

Respect data
ownership.

Ownership

20

Architecture #1
Fully Headless

21

Architecture #2
Partially Headless

22

Architecture #3

22

Commerce
Platform

Commerce Integration

23

Architecture #4

Commerce
Platform

Fully Headless Commerce Integration

24

We’ve chosen
Architecture #3
the Commerce
Integration

Assumption

25

Integration
Considerations

26

How often does data change?

Why do you need the data?

When do you need the data?

Who owns the data?

27

Import
(1 way sync)

Useful for:
Products
Accounts

Approach:
Push or Pull
Message queue

Implementation
Tip #4

Don’t fail
silently, log
everything.

28

Import & Export
(2 way sync)

29

Lazy Load

Useful for:
Coupons
Users

Approach:
Storage override
Subscribers

Implementation
Tip #5

Make sure you
can debug on

production.

30

On Demand

Useful for:
Order Confirmation
Order History
Shipping Methods
Inventory

Approach:
Custom blocks
Subscribers
Plugins

Implementation
Tip #6

If it’s loaded
Lazily or On

Demand you
should be able

to delete it

31

Transactional

Useful for:
User authentication
Checkout
Cart
Taxes
Pricing

Approach:
Custom blocks
Subscribers
Resolvers

32

Synchronization

Useful for:
Profile data
Cart
Address book
Payment methods

Approach:
Subscribers
Entity hooks

33

External Entities

Useful for:
Address Book
Payment Methods

Approach:
Storage override

34

Login

SSO (Transactional)

Retrieve
user

(Lazy Load)

Product
Detail
Page

Price
products

(Transactional)

Cart
state

(Synchronization)

Product
access

(Transactional)
Retrieve
user data

(Synchronization)

Inventory

(On Demand)

35

Questions?

MidCamp /*Midwest Drupal Camp*/ 2020 midcamp.or
g

info@midcamp.or
g

PLEASE PROVIDE YOUR
FEEDBACK!

mid.camp/6406

36

http://midcamp.org

info@midcamp.or
g

midcamp.or
g MidCamp /*Midwest Drupal Camp*/ 2020

CONTRIBUTION DAY
Saturday 10am to 4pm

You don't have to know code to give back!

New Contributor training 10am to Noon
with AmyJune Hineline of Kanopi Studios

